Wall Formwork Statics

Concrete pressure: DIN 18218 Deflections: DIN 18202

Content

Concrete Pressure: DIN 18218

Deflections: DIN 18202

Principle of double-headed formwork Bild: Christian Hofstadler Graz

- Important Terms and definition
- Horizontal concrete pressure σ_h [kN/m²]
- Placing rate v [m/h]
- Hydrostatic pressure height hs [m]
- Fresh concrete density γc [kN/m³]
- Placing temperature Tc,placing [° K]
- Reference temperature Tc,Ref [° K] *
- End of setting t_E [h] *
- Immersion depth of the vibrator hv [m]

Parameters

- Concreting height
- Type of placement
- Compaction method
- Placing rate
- Consistency faster placement
- Concrete density
- Concrete temperature
- Solidification time
 - Cement type (fast, slow)
 - Aggregates such as limestone powder
 - Concrete and environment temperature

- Placement rate v_b in m/h
- placement method:
 - Bucket
 - Delivery rate 7-8m³/h
 - Concrete pump
 Delivery rate 30-40m³/h
- Geometry of the building
 - Slabs and foundations
 - Walls
 - Columns

Slender geometry higher placement rate

wide geometry lower placement rate

Fresh concrete density

• Standard fresh concrete density $\gamma_c = 25 \text{ kN/m}^3$

Formwork

- The formwork has to be tight
- Only for vertical formwork
 - max. inclination ±5°

Vibrator

Just for application of usual internal vibrator

Concreting

Only for placement from above

placing rate v in m/h ----

Solidification time

concrete density

= 7 h

γc

V

h_S

t_E

σhk,max

= 25 kN/m³ max. concrete pressure in kN/m²

placing rate in m/h

Hydrostatic pressure height in m

Solidification time = 10 h

t_E

γc

V

h_S

concrete density = 25 kN/m³

σhk,maxmax. concrete pressurein kN/m²

placing rate in m/h

Hydrostatic pressure height in m

Solidification time = 15 h

t_E

γc

V

h_S

- concrete density = 25 kN/m³
- σhk,maxmax. concrete pressurein kN/m²
 - placing rate in m/h
 - Hydrostatic pressure height in m

7

■ EXAMPLE 1 – concrete density ≠ 25 kN/m²

Consistency F3

- Formwork designed for $\sigma_{hk,max} = 80 \text{ kN/m}^2$
- concrete density γ_c = 25 kN/m³

■ EXAMPLE 1 – concrete density ≠ 25 kN/m²

Consistency F3

• Formwork designed for $\sigma_{hk,max} = 80 \text{ kN/m}^2$

• concrete density $\gamma_c \neq 25$ kN/m³

• concrete density $\gamma_c \neq 30 \text{ kN/m}^3$

• Correction factor K = γ_c / 25 kN/m³

■ K = 30 / 25 = 1.2

■ σ'hk,chart = 80 / 1.2 = 67 kN/m²

max. v = 3.5 m / h

EXAMPLE 2 – Tc,placing > Tc,Ref

Consistency F3

Formwork designed for $\sigma_{hk,max} = 80 \text{ kN/m}^2$

concrete temperature Tc,placing = Tc,Ref

Concrete Pressure: DIN 18218 – Example 2

- **Concrete Pressure: DIN 18218**
- Deflections: DIN 18202

Tolerances – types of deflections

Distance of the measurement points

- selective irregularities
 - grooves, notches
- local irregularities
 - dents caused by plywood deflection
 - deflection of the formwork girder
- regional irregularities
 - prop settlement
 - faulty aligning of the form panel
 - excessive tie rod elongation

Distance of the measurement points

from exaltation to exaltation

Extract from DIN 18 202, Structural Engineering Tolerances, May 1986 edition

Table 3. Deflection tolerances

Line	1	2	3	4	5	6
		Position deviations (limit values), in mm, for dist. between measuring points, in m, up to				
		0.1	1 ¹)	4 ¹)	10 ¹)	15 ¹)
1	Unfinished surfaces of slabs, concrete bases, and subfloors	10	15	20	25	30
2	Unfinished surfaces of slabs, concrete bases and subfloors to more stringent specifications, eg to take floating screeds, industrial floors, tiles, composite screeds Finished surfaces for secondary purposes, eg in stores, cellars, basements	5	8	12	15	20
3	Floors with finished surfaces, eg screeds as wearing surfaces, screeds to take flooring Flooring, tiles, trowelled finishes and glued flooring	2	4	10	12	15
4	Floors with finished surfaces to more stringent specifications, eg with self-levelling screeds	1	3	9	12	15
5	Wall surfaces and soffits of structural slabs that are unfinished	5	10	15	25	30
6	Wall surfaces and soffits of slabs that are finished, eg plastered walls, wall claddings, suspended ceilings	3	5	10	20	25
7	As in line 6, but more stringent specifications	2	3	8	15	20
¹) Intermediate values are to be taken from Figures 1 and 2 and rounded to whole mm.						

Tolerances - measurement of deflections

Panel Framed Wall Formwork

Girder Wall Formwork

Thank you

For your

attention!

Successfulconstructionwith

